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IoT Devices are Disconnected



Can we improve the accuracy of prediction algorithms  

by integrating heterogeneous IoT & Smart device data  

                            and background knowledge?

Research Questions
Main RQ



Research Questions

• Combine the data

• RQ1: Is SAREF an appropriate ontology to model heterogeneous IoT data?


• Use the data in forecasters

• RQ2: Which prediction algorithms are best suited for training on the IoT data knowledge graph?


• Include external data

• RQ3: Can we improve the accuracy of forecasters by learning over a heterogeneous set of 

divers knowledge?

• RQ4: Can we maintain the accuracy of forecasters with federated learning (over other smart 

homes)?

Subquestions



Interoperability Framework
Classic setup



Interoperability Layer

Interoperability Framework
New approach

device

device

device

device



RQ1: Is SAREF an appropriate ontology to model heterogeneous IoT data?

Combine the data 
Use the data in forecasters 
Include external data



Combining the Data
Issue: Heterogeneous Smart Device Data

Timestamp State

2020-12-11T12:50:59.076Z On

2020-12-11T13:05:23.546Z Off

2020-12-11T13:20:45.789Z Off

… …

{ 
 "id":"1234.5678", 
 "type":"Sensor", 
 "value": 
 { 
   "Temperature": 
   { 
     "value":"20.8", 
     "unit":"Degrees Celsius", 
     "timestamp":"20201211122212" 
   } 
 } 
} 



Combining the Data
Smart Data Knowledge Graph
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Combining the Data
Experiments

residential2_circu
lation_pump

residential2_di
shwasher

residential2_
freezer

DE_KN_reside
ntial2_grid_imp
ort

DE_KN_residentia
l2_washing_machi
ne

DE_KN_residentia
l3_circulation_pu
mp

DE_KN_reside
ntial3_dishwas
her

DE_KN_resid
ential3_freez
er

DE_KN_reside
ntial3_grid_exp
ort

DE_KN_reside
ntial3_grid_imp
ort

DE_KN_re
sidential3_
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Combining the Data
Experiments



Experiments
Communicating information with SAREF

4.7k Ω
330 Ω

Thermometer Thermostat Heater

van der Weerdt, R., de Boer, V., Daniele, L., & Nouwt, B. (2021). Validating SAREF in a Smart Home Environment. Metadata and Semantic Research, 1355, 35.



Experiments
Communicating information with SAREF

:id1 rdf:type ex:Room .  
ex:Room rdfs:subClassOf saref:FeatureOfInterest .  
:id1 ex:hasName “Room1” .  
:obs1 rdf:type saref:Measurement .  
:obs1 saref:isMeasurementOf :id1 .  
:obs1 saref:isMeasuredIn saref:TemperatureUnit .  
:obs1 saref:hasValue “18” .

:id2 rdf:type ex:Room .  
ex:Room rdfs:subClassOf saref:FeatureOfInterest .  
:id2 ex:hasName “Room1” .  
:act1 saref:hasFeatureOfInterest :id2 .  
:act1 saref:actsUpon saref:OnOffState .  
:act1 rdf:type saref:CommandOn .

4.7k Ω
330 Ω

van der Weerdt, R., de Boer, V., Daniele, L., & Nouwt, B. (2021). Validating SAREF in a Smart Home Environment. Metadata and Semantic Research, 1355, 35.



Experiments
Communicating information with SAREF

4.7k Ω
330 Ω

van der Weerdt, R., de Boer, V., Daniele, L., & Nouwt, B. (2021). Validating SAREF in a Smart Home Environment. Metadata and Semantic Research, 1355, 35.

:id1 rdf:type ex:Room .  
ex:Room rdfs:subClassOf saref:FeatureOfInterest .  
:id1 ex:hasName “Room1” .  
:obs1 rdf:type saref:Measurement .  
:obs1 saref:isMeasurementOf :id1 .  
:obs1 saref:isMeasuredIn saref:TemperatureUnit .  
:obs1 saref:hasValue “18” .

:id2 rdf:type ex:Room .  
ex:Room rdfs:subClassOf saref:FeatureOfInterest .  
:id2 ex:hasName “Room1” .  
:act1 saref:hasFeatureOfInterest :id2 .  
:act1 saref:actsUpon saref:OnOffState .  
:act1 rdf:type saref:CommandOn .



RQ2: Which prediction algorithms are best suited for training  
                                                                     on the IoT data knowledge graph?

Combine the data 
Use the data in forecasters 
Include external data



Forecasting with Knowledge Graphs

Dog: 96% 
Cat: 44% 
Bicycle: 12%

Dog Cat Bicycle

…

What ML algorithms expect

ML 
Model



Forecasting with Knowledge Graphs

Heater on: 82% 
Heater off: 18%

What we Have

ML 
Model



Forecasting with Knowledge Graphs
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Forecasting with Knowledge Graphs
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Forecasting with Knowledge Graphs
Planned Experiments

• Transform the graph into vector representations


• Create Benchmark test comparing multiple state of the art prediction 
algorithms


• Compare prediction algorithms based on accuracy



RQ3: Can we improve the accuracy of forecasters by learning over a 
                                                        heterogeneous set of divers knowledge?

Combine the data 
Use the data in forecasters 
Include external data



Forecasting with More Data
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Forecasting with More Data
Planned Experiments

• Re-train the prediction algorithms from RQ2 with the additional data


• Compare the results of the new predictions with the previous results 

RQ3: Can we improve the accuracy of forecasters by learning over a 
                                                        heterogeneous set of divers knowledge?



Combine the data 
Use the data in forecasters 
Include external data

RQ4: Can we maintain the accuracy of forecasters with federated learning 
                                                                                  (over other smart homes)?
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Forecasting with More Knowledge
Planned Experiments

• Re-implementing the prediction algorithms from RQ2, using a federated 
learning model


• Compare the results of the new predictions with the results from RQ3

RQ4: Can we maintain the accuracy of forecasters with federated learning 
                                                                                  (over other smart homes)?



Research Question

• Combine the data

• RQ1: Is SAREF an appropriate ontology to model heterogeneous IoT data?


• Use the data in forecasters

• RQ2: Which prediction algorithms are best suited for training on the IoT data knowledge graph?


• Include external data

• RQ3: Can we improve the accuracy of forecasters by learning over a heterogeneous set of 

divers knowledge?

• RQ4: Can we maintain the accuracy of forecasters with federated learning (over other smart 

homes)?

Subquestions



Research Question

• Combine the data

• RQ1: Is SAREF an appropriate ontology to model heterogeneous IoT data?


• Use the data in forecasters

• RQ2: Which prediction algorithms are best suited for training on the IoT data knowledge graph?


• Include external data

• RQ3: Can we improve the accuracy of forecasters by learning over a heterogeneous set of 

divers knowledge?

• RQ4: Can we maintain the accuracy of forecasters with federated learning (over other smart 

homes)?

Subquestions

Mapping to Knowledge Graph

Prediction Algorithms using KGs

Linking with Data

Linking with Knowledge

Thank you


